Linear algebra#

Linear combinations#

\[ \vec{0} \ne 0 \]

Problem 1.1A#

Describe the plane the vectors \(\vec{v} = (1,1,0)\) and \(\vec{w} = (0,1,1)\) fill.

\[ c\vec{v} + d\vec{w} = (c, c+d, d) \]

Dot products and lengths#

\[\begin{split} \vec{v}\cdot\vec{w} = v_1w_1 + v_2w_2 \\ \Vert\vec{v}\Vert = \sqrt{\vec{v}\cdot\vec{v}} = \sqrt{\sum v_i^2} \end{split}\]

If

\[ \vec{v}\cdot\vec{w} = 0 \]

then \(\vec{v}\) ans \(\vec{w}\) are perpendicular.

The angle between \(\vec{v}\) and \(\vec{w}\) is given by:

\[ \cos\theta = \frac{\vec{v}\cdot\vec{w}}{\Vert\vec{v}\Vert\Vert\vec{w}\Vert} \]